On tailoring fracture resistance of brittle structures: A level set interface-enriched topology optimization approach

نویسندگان

چکیده

We propose a fully immersed topology optimization procedure to design structures with tailored fracture resistance under linear elastic mechanics assumptions for brittle materials. use level set function discretized by radial basis functions represent the and Interface-enriched Generalized Finite Element Method (IGFEM) obtain an accurate structural response. The technique assumes that cracks can nucleate at right angles from boundary, location of enriched nodes are added enhance finite element approximation. Instead performing multiple analyses evaluate energy release rates (ERRs) all potential cracks—a would be computationally intractable—we approximate them means topological derivatives after single analysis uncracked domain. ERRs then aggregated construct objective function, corresponding sensitivity formulation is derived analytically adjoint formulation. Several numerical examples demonstrate technique’s ability tailor resistance, including well-known benchmark L-shaped bracket multiple-loading problem obtaining structure anisotropy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS

This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS

This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...

متن کامل

A BINARY LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION

This paper proposes an effective algorithm based on the level set method (LSM) to solve shape and topology optimization problems. Since the conventional LSM has several limitations, a binary level set method (BLSM) is used instead. In the BLSM, the level set function can only take 1 and -1 values at convergence. Thus, it is related to phase-field methods. We don’t need to solve the Hamilton-Jac...

متن کامل

3D level-set topology optimization: a machining feature-based approach

This paper presents an explicit feature-based levelset topology optimization method involving polyline-arc profiling and 2.5D machining processes. This method relies on a feature fitting algorithm incorporated into the boundary evolvement process in order to regulate the noisy velocity fields and thus introduce new explicit feature primitives; once inserted, the feature-based shape optimization...

متن کامل

A topology optimization method based on the level set method incorporating a fictitious interface energy

This paper proposes a new topology optimization method, which can adjust the geometrical complexity of optimal configurations, using the level set method and incorporating a fictitious interface energy derived from the phase field method. First, a topology optimization problem is formulated based on the level set method, and the method of regularizing the optimization problem by introducing fic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2022

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2021.114189